LSTM-CNN Architecture for Human Activity Recognition
نویسندگان
چکیده
منابع مشابه
Concurrent Activity Recognition with Multimodal CNN-LSTM Structure
We introduce a system that recognizes concurrent activities from real-world data captured by multiple sensors of different types. The recognition is achieved in two steps. First, we extract spatial and temporal features from the multimodal data. We feed each datatype into a convolutional neural network that extracts spatial features, followed by a long-short term memory network that extracts te...
متن کاملBuilding Efficient CNN Architecture for Offline Handwritten Chinese Character Recognition
Deep convolutional networks based methods have brought great breakthrough in images classification, which provides an end-to-end solution for handwritten Chinese character recognition(HCCR) problem through learning discriminative features automatically. Nevertheless, state-of-the-art CNNs appear to incur huge computation cost, and require the storage of a large number of parameters especially i...
متن کاملJoint Learning of CNN and LSTM for Image Captioning
In this paper, we describe the details of our methods for the participation in the subtask of the ImageCLEF 2016 Scalable Image Annotation task: Natural Language Caption Generation. The model we used is the combination of a procedure of encoding and a procedure of decoding, which includes a Convolutional neural network(CNN) and a Long Short-Term Memory(LSTM) based Recurrent Neural Network. We f...
متن کاملDeep Residual Bidir-LSTM for Human Activity Recognition Using Wearable Sensors
Human activity recognition (HAR) has become a popular topic in research because of its wide application. With the development of deep learning, new ideas have appeared to address HAR problems. Here, a deep network architecture using residual bidirectional long short-term memory (LSTM) cells is proposed. The advantages of the new network include that a bidirectional connection can concatenate th...
متن کاملSensor Attack Detection and Classification via CNN and LSTM
In recent years, security of autonomous vehicles is emerging as popular research topics. Especially, autonomous vehicles are equipped with many sensors such as GPS, IMU, wheel encoders and some of them are vulnerable to the attack, such as spoofing. Our objective is to detect and classify attacks of the right encoder sensor by using variables of GPS, IMU, two wheel encoder sensors. We also anal...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Access
سال: 2020
ISSN: 2169-3536
DOI: 10.1109/access.2020.2982225